Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Emerg Microbes Infect ; 12(2): 2275598, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38078382

RESUMO

The capacity of SARS-CoV-2 to evolve poses challenges to conventional prevention and treatment options such as vaccination and monoclonal antibodies, as they rely on viral receptor binding domain (RBD) sequences from previous strains. Additionally, animal CoVs, especially those of the SARS family, are now appreciated as a constant pandemic threat. We present here a new antiviral approach featuring inhalation delivery of a recombinant viral trap composed of ten copies of angiotensin-converting enzyme 2 (ACE2) fused to the IgM Fc. This ACE2 decamer viral trap is designed to inhibit SARS-CoV-2 entry function, regardless of viral RBD sequence variations as shown by its high neutralization potency against all known SARS-CoV-2 variants, including Omicron BQ.1, BQ.1.1, XBB.1 and XBB.1.5. In addition, it demonstrates potency against SARS-CoV-1, human NL63, as well as bat and pangolin CoVs. The multivalent trap is effective in both prophylactic and therapeutic settings since a single intranasal dosing confers protection in human ACE2 transgenic mice against viral challenges. Lastly, this molecule is stable at ambient temperature for more than twelve weeks and can sustain physical stress from aerosolization. These results demonstrate the potential of a decameric ACE2 viral trap as an inhalation solution for ACE2-dependent coronaviruses of current and future pandemic concerns.


Assuntos
Infecções por Coronavirus , Coronavirus , Animais , Camundongos , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , Ligação Proteica , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/metabolismo , Glicoproteína da Espícula de Coronavírus
2.
Glycoconj J ; 40(5): 565-573, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37402017

RESUMO

Streptococcus pneumoniae is a highly invasive bacterial pathogen that can cause a range of illnesses. Pneumococcal capsular polysaccharides (CPS) are the main virulence factors that causes invasive pneumococcal disease (IPD). Pneumococcal CPS serotype 7F along with a few other serotypes is more invasive and likely to cause IPD. Therefore, 7F is a target for pneumococcal vaccine development, and is included in the two recently approved multi-valent pneumococcal conjugated vaccines, i.e. VAXNEUVANCE and PREVNAR 20.To support process and development of our 15-valent pneumococcal conjugated vaccine (PCV15), chromatographic methods have been developed for 7F polysaccharide and conjugate characterization. A size-exclusion chromatography (SEC) method with UV, light scattering and refractive index detections was employed for concentration, size and conformation analysis. A reversed-phase ultra-performance liquid chromatography (RP-UPLC) method was used for analysis of conjugate monosaccharide composition and degree of conjugation. The collective information obtained by these chromatographic analysis provided insights into the pneumococcal conjugate and conjugation process.


Assuntos
Infecções Pneumocócicas , Humanos , Sorogrupo , Sorotipagem , Infecções Pneumocócicas/prevenção & controle , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae , Vacinas Pneumocócicas , Vacinas Conjugadas , Antígenos de Bactérias
3.
Sci Rep ; 12(1): 15494, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109543

RESUMO

In the development of end-to-end large-scale live virus vaccine (LVV) manufacturing, process analytical technology (PAT) tools enable timely monitoring of critical process parameters (CPP) and significantly guide process development and characterization. In a commercial setting, these very same tools can enable real time monitoring of CPPs on the shop floor and inform harvest decisions, predict peak potency, and serve as surrogates for release potency assays. Here we introduce the development of four advanced PAT tools for upstream and downstream process monitoring in LVV manufacturing. The first tool explores the application of capacitance probes for real time monitoring of viable cell density in bioreactors. The second tool utilizes high content imaging to determine optimum time of infection in a microcarrier process. The third tool uses flow virometry (or nanoscale flow cytometry) to monitor total virus particle counts across upstream and downstream process steps and establishes a robust correlation to virus potency. The fourth and final tool explores the use of nucleic acid dye staining to discriminate between "good" and "damaged" virus particles and uses this strategy to also monitor virus aggregates generated sometimes during downstream processing. Collectively, these tools provide a comprehensive monitoring toolbox and represent a significantly enhanced control strategy for the manufacturing of LVVs.


Assuntos
Ácidos Nucleicos , Vacinas , Reatores Biológicos
4.
Vaccine ; 40(10): 1464-1471, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35140014

RESUMO

Streptococcus pneumoniae bacterial infection can cause serious diseases. Among more than 90 known streptococcus pneumoniae serotypes, more than 30 can cause invasive pneumococcal diseases that could lead to morbidity and mortality. Initially, a 23-valent polysaccharide vaccines (PPSV) PNEUMOVAX®23, was developed to generate an antigen-specific immune response and prevent diseases caused by these pneumoniae serotypes. Later, pneumococcal conjugate vaccines (PCV), such as PREVNAR® and VAXNEUVANCE™ have been developed to offer a more robust immune response in the pediatric population. In our effort to develop novel pneumococcal conjugate vaccines, each serotype of pneumococcal polysaccharide (Ps) is conjugated to a detoxified diphtheria toxin carrier protein CRM197 to form a monovalent conjugate (MVC). MVCs from multiple serotypes are formulated with vaccine adjuvant to form a multi-valent vaccine drug product. During the product development, critical attributes including conjugate molecular weight (Mw), protein and polysaccharide concentration, have been used to monitor process and product quality. To measure these attributes, a size-exclusion chromatography (SEC) method was developed with a series of in-line detectors including UV, multi-angle light scattering (MALS) and refractive index (RI). This SEC-UV-MALS-RI method is employed to characterize and monitor process intermediates and product during process development and for product release and stability testing. With this, we have expanded the multi-attribute SEC method to a 15-valent pneumococcal conjugate vaccine.


Assuntos
Infecções Pneumocócicas , Refratometria , Criança , Cromatografia em Gel , Vacina Pneumocócica Conjugada Heptavalente , Humanos , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas , Vacinas Conjugadas
5.
Sci Rep ; 11(1): 7432, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795759

RESUMO

Direct at line monitoring of live virus particles in commercial manufacturing of vaccines is challenging due to their small size. Detection of malformed or damaged virions with reduced potency is rate-limited by release potency assays with long turnaround times. Thus, preempting batch failures caused by out of specification potency results is almost impossible. Much needed are in-process tools that can monitor and detect compromised viral particles in live-virus vaccines (LVVs) manufacturing based on changes in their biophysical properties to provide timely measures to rectify process stresses leading to such damage. Using ERVEBO, MSD's Ebola virus vaccine as an example, here we describe a flow virometry assay that can quickly detect damaged virus particles and provide mechanistic insight into process parameters contributing to the damage. Furthermore, we describe a 24-h high throughput infectivity assay that can be used to correlate damaged particles directly to loss in viral infectivity (potency) in-process. Collectively, we provide a set of innovative tools to enable rapid process development, process monitoring, and control strategy implementation in large scale LVV manufacturing.


Assuntos
Citometria de Fluxo/métodos , Vacinas Atenuadas/normas , Vacinologia/métodos , Vacinologia/normas , Vacinas Virais/normas , Animais , Chlorocebus aethiops , Vacinas contra Ebola/normas , Humanos , Temperatura , Vacinas Sintéticas/normas , Células Vero , Vírion/ultraestrutura
6.
Vaccine ; 38(45): 7166-7174, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32951937

RESUMO

Ebolavirus (EBOV) entry to host cells requires membrane-associated glycoprotein (GP). A recombinant vesicular stomatitis virus vector carrying Zaire Ebola virus glycoprotein (rVSV-ZEBOV) was developed as a vaccine against ebolaviruses. The VSV glycoprotein gene was deleted (rVSVΔG) and ZEBOV glycoprotein (GP) was inserted into the deleted VSV glycoprotein open reading frame (ORF) resulting in a live, replication-competent vector (rVSVΔG-ZEBOV-GP). Automated capillary westerns were used to characterize the rVSVΔG-ZEBOV-GP vaccine (ERVEBO®) manufacturing process with regards to glycoprotein (GP) structure and variants. The method shows a unique electropherogram profile for each process step which could be used to monitor process robustness. rVSVΔG-ZEBOV-GP encodes GP (GP1-GP2), secreted GP (sGP), and small secreted GP (ssGP) variants. Furthermore, a TACE-like activity was observed indirectly by detecting soluble GP2Δ after virus precipitation by ultracentrifugation. Capillary western blotting techniques can guide process development by evaluating process steps such as enzyme treatment. In addition, the technique can assess GP stability and process lot-to-lot consistency. Finally, capillary western-based technology was used to identify a unique biochemical profile of the rVSVΔG-ZEBOV-GP vaccine strain in final product. Virion membrane-bound GP1-GP2 is critical to vaccine-elicited protection by providing both neutralizing antibodies and T-cell response.


Assuntos
Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Anticorpos Antivirais , Western Blotting , Ebolavirus/genética , Glicoproteínas/genética , Humanos , Proteínas do Envelope Viral/genética
7.
J Chromatogr A ; 1618: 460875, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31982098

RESUMO

Large RNAs including messenger RNAs (mRNAs) are promising candidates for development of new drug products and vaccines. Development of high resolution methods for direct analysis of large RNAs, especially for purity in general and size or length in particular, is critical to support new drug development and manufacture. However, resolution based on size or length for large RNAs is limited even by capillary electrophoresis (CE), which is one of the most efficient separation methods for nucleic acids in general. This paper presents a capillary gel electrophoresis (CGE) method for separating large RNA molecules by size or length under strongly denaturing, non-aqueous conditions. We believe that our work constitutes the first time that a gel suitable for CGE prepared with high molecular weight polymers and using only formamide as solvent has been successfully employed to analyze large RNAs on the basis of their size or length with high resolution. With an eye toward application for mRNAs in particular, separation conditions in this work were optimized for RNAs approximately 2000 nucleotides (nt) in length. As compared to a standard CGE method using an aqueous gel, resolution for commercially-available RNA ladder components at 1500 and 2000 nt is increased approximately 6-fold. The impacts of polymer type, molecular weight of the polymer, and polymer concentration on the separation were studied and optimized. Analysis of the results presented here also provides guidance for optimization of separation conditions for RNAs with different sizes as needed for particular applications in the future.


Assuntos
Química Farmacêutica/métodos , Eletroforese Capilar , RNA/isolamento & purificação , Peso Molecular , Polímeros/química , RNA/análise , Solventes/química
8.
Electrophoresis ; 40(18-19): 2602-2609, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31218707

RESUMO

Lipid nanoparticles (LNPs) have been employed for drug delivery in small molecules, siRNA, mRNA, and pDNA for both therapeutics and vaccines. Characterization of LNPs is challenging because they are heterogeneous mixtures of large complex particles. Many tools for particle size characterization, such as dynamic and static light scattering, have been applied as well as morphology analysis using electron microscopy. CE has been applied for the characterization of many different large particles such as liposomes, polymer, and viruses. However, there have been limited efforts to characterize the surface charge of LNPs and CIEF has not been explored for this type of particle. Typically, LNPs for delivery of oligonucleotides contain at least four different lipids, with at least one being an ionizable cationic lipid. Here, we describe the development of an imaged capillary isoelectric focusing method used to measure the surface charge (i.e., pI) of an LNP-based mRNA vaccine. This method is capable of distinguishing the pI of LNPs manufactured with one or more different ionizable lipids for the purpose of confirming LNP identity in a manufacturing setting. Additionally, the method is quantitative and stability-indicating making it suitable for both process and formulation development.


Assuntos
Focalização Isoelétrica/métodos , Lipídeos/química , Nanopartículas/química , RNA Mensageiro/química , Vacinas Sintéticas/química , Lipídeos/análise , Nanopartículas/análise , RNA Mensageiro/análise , Propriedades de Superfície , Temperatura , Vacinas Sintéticas/análise
9.
Artigo em Inglês | MEDLINE | ID: mdl-29038280

RESUMO

The host immune response to human cytomegalovirus (HCMV) is effective against HCMV reactivation from latency, though not sufficient to clear the virus. T cells are primarily responsible for the control of viral reactivation. When the host immune system is compromised, as in transplant recipients with immunosuppression, HCMV reactivation and progressive infection can cause serious morbidity and mortality. Adoptive T cell therapy is effective for the control of HCMV infection in transplant recipients. However, it is a highly personalized therapeutic regimen and is difficult to implement in routine clinical practice. In this study, we explored a bispecific-antibody strategy to direct non-HCMV-specific T cells to recognize and exert effector functions against HCMV-infected cells. Using a knobs-into-holes strategy, we constructed a bispecific antibody in which one arm is specific for CD3 and can trigger T cell activation, while the other arm, specific for HCMV glycoprotein B (gB), recognizes and marks HCMV-infected cells based on the expression of viral gB on their surfaces. We showed that this bispecific antibody was able to redirect T cells with specificity for HCMV-infected cells in vitro In the presence of HCMV infection, the engineered antibody was able to activate T cells with no HCMV specificity for cytokine production, proliferation, and the expression of phenotype markers unique to T cell activation. These results suggested the potential of engineered bispecific antibodies, such as the construct described here, as prophylactic or therapeutic agents against HCMV reactivation and infection.


Assuntos
Anticorpos Biespecíficos/farmacologia , Complexo CD3/imunologia , Infecções por Citomegalovirus/tratamento farmacológico , Infecções por Citomegalovirus/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Proteínas do Envelope Viral/imunologia , Transferência Adotiva , Anticorpos Monoclonais Humanizados , Anticorpos Antivirais , Especificidade de Anticorpos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral
10.
NPJ Vaccines ; 2: 36, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29263890

RESUMO

Human cytomegalovirus (HCMV) is the leading cause of in utero viral infection in the United States. Since congenital HCMV infection can lead to birth defects in newborns, developing a prophylactic vaccine is a high priority. One of the early experimental vaccines, composed of a recombinant glycoprotein B (gB) formulated with MF59 adjuvant, has demonstrated approximately 50% efficacy against HCMV infection in seronegative women. Using immune sera from two gB/MF59 Phase 1 studies in humans we showed that complement can enhance the in vitro HCMV neutralizing potency of antibodies induced by the gB/MF59 vaccination. To characterize this complement-dependent antiviral activity, we analyzed three rabbit non-neutralizing gB monoclonal antibodies (mAbs) with different biochemical profiles including epitope specificity. Two of the three mAbs, r272.7 and r210.4, exhibited neutralizing activity when complement was added to the assays, and this complement-dependent antiviral activity was not related to the antibody's affinity to gB but appeared to be associated with their epitope specificities. Moreover, neutralization could only be demonstrated when complement was present at or before viral entry, suggesting that IgG Fc-mediated function was not the basis for this antiviral activity. Lastly, we demonstrated that gB/MF59 immune sera contained antibodies that can cross-compete with r272.7 for gB binding and that the titers of these antibodies correlated with complement-dependent neutralization titers. These results suggested that gB antibodies with certain biochemical properties have neutralizing potency when complement is present and that this complement-dependent antiviral activity may be a part of immune components which conferred protection against HCMV infection by gB/MF59 vaccination.

11.
Oncotarget ; 8(43): 73654-73669, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-29088734

RESUMO

Human cytomegalovirus (HCMV) can cause life-threatening infection in immunosuppressed patients, and in utero infection that may lead to birth defects. No vaccine is currently available. HCMV infection in healthy subjects is generally asymptomatic, and virus persists as latent infection for life. Host immunity is effective against reactivation and super-infection with another strain. Thus, vaccine candidates able to elicit immune responses similar to those of natural infection may confer protection. Since neutralization is essential for prophylactic vaccines, it is important to understand how antiviral antibodies are developed in natural infection. We hypothesized that the developmental path of antibodies in seropositive subjects could be unveiled by interrogating host B-cell repertoires using unique genetic signature sequences of mAbs. Towards this goal, we isolated 56 mAbs from three healthy donors with different neutralizing titers. Antibodies specific to the gH/gL/pUL128/130/131 pentameric complex were more potent in neutralization than those to gB. Using these mAbs as probes, patterns of extended lineage development for B-cells and evidence of active antibody maturation were revealed in two donors with higher neutralizing titers. Importantly, such patterns were limited to mAbs specific to the pentamer, but none to gB. Thus, memory B-cells with antiviral function such as neutralization were active during latent infection in the two donors, and this activity was responsible for their higher neutralizing titers. Our results indicated that memory B-cells of neutralizing capacity could be frequently mobilized in host, probably responding to silent viral episodes, further suggesting that neutralizing antibodies could play a role in control of recurrent infection.

12.
Anal Biochem ; 534: 19-23, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28666777

RESUMO

Maurice is a new instrument that can perform imaged capillary isoelectric focusing (icIEF). The standard detection for icIEF is UV absorbance at 280 nm, which limits its application to high protein concentration samples and non-complex samples. Here we describe an icIEF instrument with fluorescence detection. We demonstrate the advantage of using either icIEF with fluorescence detection or quantitative Western Blot to measure diphtheria toxin mutant CRM197 protein titer in crude cell lysates and purified samples. These two techniques have great potentials to become standard methods to analyze protein titers in crude cell lysate or other complex samples types.


Assuntos
Proteínas de Bactérias/análise , Fluorescência , Focalização Isoelétrica , Western Blotting , Eletroforese Capilar , Espectrometria de Fluorescência
13.
J Chromatogr A ; 1498: 163-168, 2017 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-28366569

RESUMO

Clostridium difficile is a gram-positive intestine bacterium that causes a severe diarrhea and could eventually be lethal. The main virulence factor is related to the release of two major exotoxins, toxin A (TcdA) and toxin B (TcdB). Recent C. difficile-associated disease (CDAD) outbreaks have been caused by hypervirulent strains which secrete an additional binary toxin (CDTa/CDTb). Vaccination against these toxins is considered the best way to combat the CDAD. Recently, a novel tetravalent C. difficile vaccine candidate containing all four toxins produced from a baculovirus expression system has been developed. A dose assay to release this tetravalent C. difficile vaccine was developed using tandem ion-exchange HPLC chromatography. A sequential weak cation exchange (carboxyl group) and weak anion exchange (tertiary amine group) columns were employed. The four C. difficile vaccine antigen pIs range from 4.4 to 8.6. The final optimized separation employs salt gradient elution at two different pHs. The standard analytical parameters such as LOD, LOQ, linearity, accuracy, precision and repeatability were evaluated for this method and it was deemed acceptable as a quantitative assay for vaccine release. Furthermore, the developed method was utilized for monitoring the stability of the tetravalent C. difficile vaccine in final container.


Assuntos
Vacinas Bacterianas/análise , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , ADP Ribose Transferases/genética , ADP Ribose Transferases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Vacinas Bacterianas/biossíntese , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/isolamento & purificação , Baculoviridae/genética , Clostridioides difficile/metabolismo , Enterocolite Pseudomembranosa/prevenção & controle , Enterotoxinas/genética , Enterotoxinas/metabolismo , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Ponto Isoelétrico , Estabilidade Proteica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação
14.
J Chromatogr A ; 1498: 169-175, 2017 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-28238427

RESUMO

Clostridium difficile infection (CDI) is the leading cause of gastroenteritis-associated death in the United States. The major virulent factors of C. difficile are toxin A (TcdA) and toxin B (TcdB). Toxicity is mediated by the glucosyltransferase domains on TcdA and TcdB wherein a glucose is transferred from UDP-glucose to Ras homolog family member A (RhoA) receptor. This modification results in disruption of critical cell signaling events. Vaccination against these toxins is considered the best way to combat the CDI. In order to produce non-toxic TcdA and TcdB antigens, their glucosyltransferase domains were genetically mutated to inactivate the toxin activity. We have developed a reverse phase ultra performance liquid chromatographic (RP-UPLC) method to measure this glucosyltransferase activity by separating RhoA and glucosylated RhoA. Glucosylated RhoA and RhoA have a retention time (RT) of 31.25 and 31.95min. We determine for the first time the glucosyltransferase kinetics (Km and kcat) of both full length TcdA and TcdB to RhoA and demonstrate that the genetically mutated TcdA and TcdB show no glucosyltransferase activity. Furthermore, two-dimensional electron microscopy (2D EM) data demonstrates that the overall global structures of mutated toxins do not change compared to native toxins.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Cromatografia Líquida de Alta Pressão , Clostridioides difficile/metabolismo , Enterotoxinas/metabolismo , Glucosiltransferases/metabolismo , Proteína rhoA de Ligação ao GTP/análise , Glicosilação , Humanos , Cinética , Espectrometria de Massas , Microscopia Eletrônica , Uridina Difosfato Glucose/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
15.
J Virol ; 91(7)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28077654

RESUMO

Human cytomegalovirus (HCMV) is the leading cause of congenital viral infection, and developing a prophylactic vaccine is of high priority to public health. We recently reported a replication-defective human cytomegalovirus with restored pentameric complex glycoprotein H (gH)/gL/pUL128-131 for prevention of congenital HCMV infection. While the quantity of vaccine-induced antibody responses can be measured in a viral neutralization assay, assessing the quality of such responses, including the ability of vaccine-induced antibodies to cross-neutralize the field strains of HCMV, remains a challenge. In this study, with a panel of neutralizing antibodies from three healthy human donors with natural HCMV infection or a vaccinated animal, we mapped eight sites on the dominant virus-neutralizing antigen-the pentameric complex of glycoprotein H (gH), gL, and pUL128, pUL130, and pUL131. By evaluating the site-specific antibodies in vaccine immune sera, we demonstrated that vaccination elicited functional antiviral antibodies to multiple neutralizing sites in rhesus macaques, with quality attributes comparable to those of CMV hyperimmune globulin. Furthermore, these immune sera showed antiviral activities against a panel of genetically distinct HCMV clinical isolates. These results highlighted the importance of understanding the quality of vaccine-induced antibody responses, which includes not only the neutralizing potency in key cell types but also the ability to protect against the genetically diverse field strains.IMPORTANCE HCMV is the leading cause of congenital viral infection, and development of a preventive vaccine is a high public health priority. To understand the strain coverage of vaccine-induced immune responses in comparison with natural immunity, we used a panel of broadly neutralizing antibodies to identify the immunogenic sites of a dominant viral antigen-the pentameric complex. We further demonstrated that following vaccination of a replication-defective virus with the restored pentameric complex, rhesus macaques can develop broadly neutralizing antibodies targeting multiple immunogenic sites of the pentameric complex. Such analyses of site-specific antibody responses are imperative to our assessment of the quality of vaccine-induced immunity in clinical studies.


Assuntos
Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Infecções por Citomegalovirus/prevenção & controle , Citomegalovirus/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Especificidade de Anticorpos , Linhagem Celular , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Mapeamento de Epitopos , Humanos , Macaca mulatta , Ligação Proteica , Coelhos , Vacinação , Vacinas Virais/administração & dosagem , Internalização do Vírus
16.
Methods Mol Biol ; 1476: 279-87, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27507349

RESUMO

High-performance size-exclusion chromatography (HPSEC or SEC) is a method that can be applied to measure size distribution of proteins, including aggregates, monomers, and fragments. In the biopharmaceutical industry the quantitation of aggregates contained in biotherapeutics and protein-based vaccines is critical given the potential impact on safety, immunogenicity, and efficacy. Hence, aggregation analysis of therapeutic proteins or protein-based vaccine products is almost always a requirement of regulatory agencies. SEC, also referred to as gel-filtration chromatography, separates molecules by size through a porous resin stationary phase. Under isocratic flow small molecules are retained on the column longer than large molecules. Here we describe the use of this SEC technique to characterize aggregation levels for four different protein antigens for a Clostridium difficile vaccine.


Assuntos
Vacinas Bacterianas/isolamento & purificação , Cromatografia em Gel/métodos , Clostridioides difficile/imunologia , Enterocolite Pseudomembranosa/prevenção & controle , Potência de Vacina , ADP Ribose Transferases/química , ADP Ribose Transferases/isolamento & purificação , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Toxinas Bacterianas/química , Toxinas Bacterianas/isolamento & purificação , Vacinas Bacterianas/biossíntese , Vacinas Bacterianas/genética , Baculoviridae/genética , Baculoviridae/metabolismo , Cromatografia Líquida de Alta Pressão , Clostridioides difficile/química , Enterocolite Pseudomembranosa/imunologia , Enterocolite Pseudomembranosa/microbiologia , Enterotoxinas/química , Enterotoxinas/isolamento & purificação , Escherichia coli/genética , Escherichia coli/metabolismo , Formaldeído/química , Humanos , Agregados Proteicos , Vacinas Atenuadas , Vacinas Sintéticas
17.
Artigo em Inglês | MEDLINE | ID: mdl-27157808

RESUMO

Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes severe arthralgia. The envelope of CHIKV is composed of 240 copies of two glycoproteins: E1 and E2. In this work, we have characterized the N-glycosylation patterns of CHIKV virus-like particles (VLPs), containing both E1 and E2 proteins, derived from mammalian and insect cells using hydrophilic interaction liquid chromatography (HILIC) with fluorescence (FL) and mass spectrometry (MS) detection. While HEK293 derived CHIKV VLPs contain oligomannose, hybrid and complex glycans, VLPs derived from SfBasic predominantly contain oligomannose glycans. This strong host dependence of N-glycosylation pattern resembles other alphaviruses such as SINV. The VLPs from HEK293 and SfBasic, with significantly different N-glycosylation profiles, are valuable reagents enabling future in-depth correlation studies between immunogenicity and glycosylation. In addition, the characterization tools presented here allow one to monitor glycosylation during vaccine process development and ensure process consistency.


Assuntos
Febre de Chikungunya/virologia , Vírus Chikungunya/química , Polissacarídeos/análise , Proteínas do Envelope Viral/química , Animais , Linhagem Celular , Cromatografia Líquida/métodos , Glicosilação , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Insetos , Espectrometria de Massas/métodos , Modelos Moleculares
18.
Electrophoresis ; 36(21-22): 2798-2804, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26084776

RESUMO

Both poly and mono ADP-ribosylation are common posttranslational protein modifications. For example, poly ADP-ribosylation is involved in DNA repair mechanisms through the poly (ADP-ribose) polymerase (PARP) family of enzymes. While mono ADP-ribosylation has been known to trigger cell death exhibited by many bacterial toxins. Because of the wide role of ADP-ribosylation, the detection and analysis are very important for further understanding of the PARP family of enzymes and the molecular mechanisms leading to cell toxicity in the presence of bacterial enzymes. Here, we describe a novel technique utilizing a CE-based Western technology to detect and analyze ADP-ribosylated proteins. The method is based on a nanovolume size separation that is automated, quantitative, offers great sensitivity, and is high-throughput for potential use in PARP drug screening inhibitor assays.

19.
Hum Vaccin Immunother ; 11(6): 1518-25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25997113

RESUMO

The development of a multivalent outer membrane vesicle (OMV) vaccine where each strain contributes multiple key protein antigens presents numerous analytical challenges. One major difficulty is the ability to accurately and specifically quantitate each antigen, especially during early development and process optimization when immunoreagents are limited or unavailable. To overcome this problem, quantitative mass spectrometry methods can be used. In place of traditional mass assays such as enzyme-linked immunosorbent assays (ELISAs), quantitative LC-MS/MS using multiple reaction monitoring (MRM) can be used during early-phase process development to measure key protein components in complex vaccines in the absence of specific immunoreagents. Multiplexed, label-free quantitative mass spectrometry methods using protein extraction by either detergent or 2-phase solvent were developed to quantitate levels of several meningococcal serogroup B protein antigens in an OMV vaccine candidate. Precision was demonstrated to be less than 15% RSD for the 2-phase extraction and less than 10% RSD for the detergent extraction method. Accuracy was 70 to 130% for the method using a 2-phase extraction and 90-110% for detergent extraction. The viability of MS-based protein quantification as a vaccine characterization method was demonstrated and advantages over traditional quantitative methods were evaluated. Implementation of these MS-based quantification methods can help to decrease the development time for complex vaccines and can provide orthogonal confirmation of results from existing antigen quantification techniques.


Assuntos
Antígenos de Bactérias/análise , Proteínas de Bactérias/análise , Cromatografia Líquida/métodos , Vacinas Meningocócicas/química , Espectrometria de Massas em Tandem/métodos , Descoberta de Drogas/métodos , Humanos , Neisseria meningitidis Sorogrupo B/imunologia
20.
J Biol Chem ; 290(26): 15985-95, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-25947373

RESUMO

Congenital infection of human cytomegalovirus (HCMV) is one of the leading causes of nongenetic birth defects, and development of a prophylactic vaccine against HCMV is of high priority for public health. The gH/gL/pUL128-131 pentameric complex mediates HCMV entry into endothelial and epithelial cells, and it is a major target for neutralizing antibody responses. To better understand the mechanism by which antibodies interact with the epitopes of the gH/gL/pUL128-131 pentameric complex resulting in viral neutralization, we expressed and purified soluble gH/gL/pUL128-131 pentameric complex and gH/gL from Chinese hamster ovary cells to >95% purity. The soluble gH/gL, which exists predominantly as (gH/gL)2 homodimer with a molecular mass of 220 kDa in solution, has a stoichiometry of 1:1 and a pI of 6.0-6.5. The pentameric complex has a molecular mass of 160 kDa, a stoichiometry of 1:1:1:1:1, and a pI of 7.4-8.1. The soluble pentameric complex, but not gH/gL, adsorbs 76% of neutralizing activities in HCMV human hyperimmune globulin, consistent with earlier reports that the most potent neutralizing epitopes for blocking epithelial infection are unique to the pentameric complex. Functionally, the soluble pentameric complex, but not gH/gL, blocks viral entry to epithelial cells in culture. Our results highlight the importance of the gH/gL/pUL128-131 pentameric complex in HCMV vaccine design and emphasize the necessity to monitor the integrity of the pentameric complex during the vaccine manufacturing process.


Assuntos
Infecções por Citomegalovirus/virologia , Citomegalovirus/imunologia , Células Epiteliais/virologia , Epitopos/imunologia , Glicoproteínas de Membrana/imunologia , Proteínas do Envelope Viral/imunologia , Internalização do Vírus , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Cricetinae , Citomegalovirus/genética , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/imunologia , Células Epiteliais/imunologia , Epitopos/genética , Humanos , Glicoproteínas de Membrana/genética , Ligação Proteica , Proteínas do Envelope Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA